Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

05/06/2016
by   Xujin Chen, et al.
0

Given a simple graph G=(V,E), a subset of E is called a triangle cover if it intersects each triangle of G. Let ν_t(G) and τ_t(G) denote the maximum number of pairwise edge-disjoint triangles in G and the minimum cardinality of a triangle cover of G, respectively. Tuza conjectured in 1981 that τ_t(G)/ν_t(G)<2 holds for every graph G. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set T_G of triangles covers all edges in G. We show that a triangle cover of G with cardinality at most 2ν_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) ν_t(G)/| T_G|>1/3, (ii) ν_t(G)/|E|>1/4, (iii) |E|/| T_G|>2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithms

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro