Sub-band Knowledge Distillation Framework for Speech Enhancement

05/29/2020
by   Xiang Hao, et al.
0

In single-channel speech enhancement, methods based on full-band spectral features have been widely studied. However, only a few methods pay attention to non-full-band spectral features. In this paper, we explore a knowledge distillation framework based on sub-band spectral mapping for single-channel speech enhancement. Specifically, we divide the full frequency band into multiple sub-bands and pre-train an elite-level sub-band enhancement model (teacher model) for each sub-band. These teacher models are dedicated to processing their own sub-bands. Next, under the teacher models' guidance, we train a general sub-band enhancement model (student model) that works for all sub-bands. Without increasing the number of model parameters and computational complexity, the student model's performance is further improved. To evaluate our proposed method, we conducted a large number of experiments on an open-source data set. The final experimental results show that the guidance from the elite-level teacher models dramatically improves the student model's performance, which exceeds the full-band model by employing fewer parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro