Style-Content Disentanglement in Language-Image Pretraining Representations for Zero-Shot Sketch-to-Image Synthesis

06/03/2022
by   Jan Zuiderveld, et al.
0

In this work, we propose and validate a framework to leverage language-image pretraining representations for training-free zero-shot sketch-to-image synthesis. We show that disentangled content and style representations can be utilized to guide image generators to employ them as sketch-to-image generators without (re-)training any parameters. Our approach for disentangling style and content entails a simple method consisting of elementary arithmetic assuming compositionality of information in representations of input sketches. Our results demonstrate that this approach is competitive with state-of-the-art instance-level open-domain sketch-to-image models, while only depending on pretrained off-the-shelf models and a fraction of the data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro