Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics

08/17/2020
by   Luis C. García-Naranjo, et al.
0

We propose a discretization of vector fields that are Hamiltonian up to multiplication by a positive function on the phase space that may be interpreted as a time reparametrization. We prove that our method is structure preserving in the sense that the discrete flow is interpolated to arbitrary order by the flow of a continuous system possessing the same structure. In particular, our discretization preserves a smooth measure on the phase space to arbitrary order. We present applications to a remarkable class of nonholonomic mechanical systems that allow Hamiltonization. To our best knowledge, these results provide the first occurrence in the literature of a measure preserving discretization of measure preserving nonholonomic systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro