Structure-Aware and Temporally Coherent 3D Human Pose Estimation

11/25/2017
by   Rishabh Dabral, et al.
0

Deep learning methods for 3D human pose estimation from RGB images require a huge amount of domain-specific labeled data for good in-the-wild performance. However, obtaining annotated 3D pose data requires a complex motion capture setup which is generally limited to controlled settings. We propose a semi-supervised learning method using a structure-aware loss function which is able to utilize abundant 2D data to learn 3D information. Furthermore, we present a simple temporal network which uses additional context present in pose sequences to improve and temporally harmonize the pose estimates. Our complete pipeline improves upon the state-of-the-art by 11.8 commodity graphics card.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro