Streamlining Multimodal Data Fusion in Wireless Communication and Sensor Networks

02/24/2023
by   Mohammud J. Bocus, et al.
0

This paper presents a novel approach for multimodal data fusion based on the Vector-Quantized Variational Autoencoder (VQVAE) architecture. The proposed method is simple yet effective in achieving excellent reconstruction performance on paired MNIST-SVHN data and WiFi spectrogram data. Additionally, the multimodal VQVAE model is extended to the 5G communication scenario, where an end-to-end Channel State Information (CSI) feedback system is implemented to compress data transmitted between the base-station (eNodeB) and User Equipment (UE), without significant loss of performance. The proposed model learns a discriminative compressed feature space for various types of input data (CSI, spectrograms, natural images, etc), making it a suitable solution for applications with limited computational resources.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro