Stochastic Implicit Natural Gradient for Black-box Optimization

10/09/2019
by   Yueming Lyu, et al.
0

Black-box optimization is primarily important for many compute-intensive applications, including reinforcement learning (RL), robot control, etc. This paper presents a novel theoretical framework for black-box optimization, in which our method performs stochastic update within a trust region defined with KL-divergence. We show that this update is equivalent to a natural gradient step w.r.t. natural parameters of an exponential-family distribution. Theoretically, we prove the convergence rate of our framework for convex functions. Our theoretical results also hold for non-differentiable black-box functions. Empirically, our method achieves superior performance compared with the state-of-the-art method CMA-ES on separable benchmark test problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro