Statistically Motivated Second Order Pooling

01/23/2018
by   Kaicheng Yu, et al.
0

Second-order pooling, a.k.a. bilinear pooling, has proven effective for visual recognition. The recent progress in this area has focused on either designing normalization techniques for second-order models, or compressing the second-order representations. However, these two directions have typically been followed separately, and without any clear statistical motivation. Here, by contrast, we introduce a statistically-motivated framework that jointly tackles normalization and compression of second-order representations. To this end, we design a parametric vectorization layer, which maps a covariance matrix, known to follow a Wishart distribution, to a vector whose elements can be shown to follow a Chi-square distribution. We then propose to make use of a square-root normalization, which makes the distribution of the resulting representation converge to a Gaussian, thus complying with the standard machine learning assumption. As evidenced by our experiments, this lets us outperform the state-of-the-art second-order models on several benchmark recognition datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro