Statistical and machine learning ensemble modelling to forecast sea surface temperature

09/18/2019
by   Stefan Wolff, et al.
0

In situ and remotely sensed observations have huge potential to develop data-driven predictive models for oceanography. A suite of machine learning models, including regression, decision tree and deep learning approaches were developed to estimate sea surface temperatures (SST). Training data consisted of satellite-derived SST and atmospheric data from The Weather Company. Models were evaluated in terms of accuracy and computational complexity. Predictive skills were assessed against observations and a state-of-the-art, physics-based model from the European Centre for Medium Weather Forecasting. Results demonstrated that by combining automated feature engineering with machine-learning approaches, accuracy comparable to existing state-of-the-art can be achieved. Models captured seasonal trends in the data together with short-term variations driven by atmospheric forcing. Further, it demonstrated that machine-learning-based approaches can be used as transportable prediction tools for ocean variables -- a challenge for existing physics-based approaches that rely heavily on user parametrisation to specific geography and topography. The low computational cost of inference makes the approach particularly attractive for edge-based computing where predictive models could be deployed on low-power devices in the marine environment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro