Stationary Distribution of a Generalized LRU-MRU Content Cache

04/17/2017
by   George Kesidis, et al.
0

Many different caching mechanisms have been previously proposed, exploring different insertion and eviction policies and their performance individually and as part of caching networks. We obtain a novel closed-form stationary invariant distribution for a generalization of LRU and MRU caching nodes under a reference Markov model. Numerical comparisons are made with an "Incremental Rank Progress" (IRP a.k.a. CLIMB) and random eviction (a.k.a. random replacement) methods under a steady-state Zipf popularity distribution. The range of cache hit probabilities is smaller under MRU and larger under IRP compared to LRU. We conclude with the invariant distribution for a special case of a random-eviction caching tree-network and associated discussion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro