Stage-wise Channel Pruning for Model Compression

11/10/2020
by   Mingyang Zhang, et al.
0

Auto-ML pruning methods aim at searching a pruning strategy automatically to reduce the computational complexity of deep Convolutional Neural Networks(deep CNNs). However, some previous works found that the results of many Auto-ML pruning methods even cannot surpass the results of the uniformly pruning method. In this paper, we first analyze the reason for the ineffectiveness of Auto-ML pruning. Subsequently, a stage-wise pruning(SP) method is proposed to solve the above problem. As with most of the previous Auto-ML pruning methods, SP also trains a super-net that can provide proxy performance for sub-nets and search the best sub-net who has the best proxy performance. Different from previous works, we split a deep CNN into several stages and use a full-net where all layers are not pruned to supervise the training and the searching of sub-nets. Remarkably, the proxy performance of sub-nets trained with SP is closer to the actual performance than most of the previous Auto-ML pruning works. Therefore, SP achieves the state-of-the-art on both CIFAR-10 and ImageNet under the mobile setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro