Stabilized Isogeometric Collocation Methods for Hyperbolic Conservation Laws

07/14/2023
by   Ryan M. Aronson, et al.
0

We introduce stabilized spline collocation schemes for the numerical solution of nonlinear, hyperbolic conservation laws. A nonlinear, residual-based viscosity stabilization is combined with a projection stabilization-inspired linear operator to stabilize the scheme in the presence of shocks and prevent the propagation of spurious, small-scale oscillations. Due to the nature of collocation schemes, these methods possess the possibility for greatly reduced computational cost of high-order discretizations. Numerical results for the linear advection, Burgers, Buckley-Leverett, and Euler equations show that the scheme is robust in the presence of shocks while maintaining high-order accuracy on smooth problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro