STA: Spatial-Temporal Attention for Large-Scale Video-based Person Re-Identification

11/09/2018
by   Yang Fu, et al.
0

In this work, we propose a novel Spatial-Temporal Attention (STA) approach to tackle the large-scale person re-identification task in videos. Different from the most existing methods, which simply compute representations of video clips using frame-level aggregation (e.g. average pooling), the proposed STA adopts a more effective way for producing robust clip-level feature representation. Concretely, our STA fully exploits those discriminative parts of one target person in both spatial and temporal dimensions, which results in a 2-D attention score matrix via inter-frame regularization to measure the importances of spatial parts across different frames. Thus, a more robust clip-level feature representation can be generated according to a weighted sum operation guided by the mined 2-D attention score matrix. In this way, the challenging cases for video-based person re-identification such as pose variation and partial occlusion can be well tackled by the STA. We conduct extensive experiments on two large-scale benchmarks, i.e. MARS and DukeMTMC-VideoReID. In particular, the mAP reaches 87.7 significantly outperforms the state-of-the-arts with a large margin of more than 11.6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro