Spectrogram Feature Losses for Music Source Separation

01/15/2019
by   Abhimanyu Sahai, et al.
0

In this paper we study deep learning-based music source separation, and explore using an alternative loss to the standard spectrogram pixel-level L2 loss for model training. Our main contribution is in demonstrating that adding a high-level feature loss term, extracted from the spectrograms using a VGG net, can improve separation quality vis-a-vis a pure pixel-level loss. We show this improvement in the context of the MMDenseNet, a State-of-the-Art deep learning model for this task, for the extraction of drums and vocal sounds from songs in the musdb18 database, covering a broad range of western music genres. We believe that this finding can be generalized and applied to broader machine learning-based systems in the audio domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro