Space-Efficient Graph Coarsening with Applications to Succinct Planar Encodings

05/12/2022
by   Frank Kammer, et al.
0

We present a novel space-efficient graph coarsening technique for n-vertex planar graphs G, called cloud partition, which partitions the vertices V(G) into disjoint sets C of size O(log n) such that each C induces a connected subgraph of G. Using this partition 𝒫 we construct a so-called structure-maintaining minor F of G via specific contractions within the disjoint sets such that F has O(n/log n) vertices. The combination of (F, 𝒫) is referred to as a cloud decomposition. For planar graphs we show that a cloud decomposition can be constructed in O(n) time and using O(n) bits. Given a cloud decomposition (F, 𝒫) constructed for a planar graph G we are able to find a balanced separator of G in O(n/log n) time. Contrary to related publications, we do not make use of an embedding of the planar input graph. We generalize our cloud decomposition from planar graphs to H-minor-free graphs for any fixed graph H. This allows us to construct the succinct encoding scheme for H-minor-free graphs due to Blelloch and Farzan (CPM 2010) in O(n) time and O(n) bits improving both runtime and space by a factor of Θ(log n). As an additional application of our cloud decomposition we show that, for H-minor-free graphs, a tree decomposition of width O(n^1/2 + ϵ) for any ϵ > 0 can be constructed in O(n) bits and a time linear in the size of the tree decomposition. A similar result by Izumi and Otachi (ICALP 2020) constructs a tree decomposition of width O(k √(n)log n) for graphs of treewidth k ≤√(n) in sublinear space and polynomial time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro