Skew Brownian Motion and Complexity of the ALPS Algorithm

09/25/2020
by   Gareth O. Roberts, et al.
0

Simulated tempering is a popular method of allowing MCMC algorithms to move between modes of a multimodal target density π. The paper [24] introduced the Annealed Leap-Point Sampler (ALPS) to allow for rapid movement between modes. In this paper, we prove that, under appropriate assumptions, a suitably scaled version of the ALPS algorithm converges weakly to skew Brownian motion. Our results show that under appropriate assumptions, the ALPS algorithm mixes in time O(d[log(d)]^2 ) or O(d), depending on which version is used.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro