Singular value distribution of dense random matrices with block Markovian dependence

04/28/2022
by   Jaron Sanders, et al.
0

A block Markov chain is a Markov chain whose state space can be partitioned into a finite number of clusters such that the transition probabilities only depend on the clusters. Block Markov chains thus serve as a model for Markov chains with communities. This paper establishes limiting laws for the singular value distributions of the empirical transition matrix and empirical frequency matrix associated to a sample path of the block Markov chain whenever the length of the sample path is Θ(n^2) with n the size of the state space. The proof approach is split into two parts. First, we introduce a class of symmetric random matrices with dependence called approximately uncorrelated random matrices with variance profile. We establish their limiting eigenvalue distributions by means of the moment method. Second, we develop a coupling argument to show that this general-purpose result applies to block Markov chains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro