Single-Shot Compression for Hypothesis Testing

07/20/2021
by   Fabrizio Carpi, et al.
0

Enhanced processing power in the cloud allows constrained devices to offload costly computations: for instance, complex data analytics tasks can be computed by remote servers. Remote execution calls for a new compression paradigm that optimizes performance on the analytics task within a rate constraint, instead of the traditional rate-distortion framework which focuses on source reconstruction. This paper considers a simple binary hypothesis testing scenario where the resource constrained client (transmitter) performs fixed-length single-shot compression on data sampled from one of two distributions; the server (receiver) performs a hypothesis test on multiple received samples to determine the correct source distribution. To this end, the task-aware compression problem is formulated as finding the optimal source coder that maximizes the asymptotic error performance of the hypothesis test on the server side under a rate constraint. A new source coding strategy based on a greedy optimization procedure is proposed and it is shown that that the proposed compression scheme outperforms universal fixed-length single-shot coding scheme for a range of rate constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro