Simultaneous directional inference

01/04/2023
by   Ruth Heller, et al.
0

We consider the problem of inference on the signs of n>1 parameters. Within a simultaneous inference framework, we aim to: identify as many of the signs of the individual parameters as possible; provide confidence bounds on the number of positive (or negative) parameters on subsets of interest. Our suggestion is as follows: start by using the data to select the direction of the hypothesis test for each parameter; then, adjust the one-sided p-values for the selection, and use them for simultaneous inference on the selected n one-sided hypotheses. The adjustment is straightforward assuming that the one-sided p-values are conditionally valid and mutually independent. Such assumptions are commonly satisfied in a meta-analysis, and we can apply our approach following a test of the global null hypothesis that all parameters are zero, or of the hypothesis of no qualitative interaction. We consider the use of two multiple testing principles: closed testing and partitioning. The novel procedure based on partitioning is more powerful, but slightly less informative: it only infers on positive and non-positive signs. The procedure takes at most a polynomial time, and we show its usefulness on a subgroup analysis of a medical intervention, and on a meta-analysis of an educational intervention.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro