Sibling-Attack: Rethinking Transferable Adversarial Attacks against Face Recognition

03/22/2023
by   Zexin Li, et al.
0

A hard challenge in developing practical face recognition (FR) attacks is due to the black-box nature of the target FR model, i.e., inaccessible gradient and parameter information to attackers. While recent research took an important step towards attacking black-box FR models through leveraging transferability, their performance is still limited, especially against online commercial FR systems that can be pessimistic (e.g., a less than 50 on average). Motivated by this, we present Sibling-Attack, a new FR attack technique for the first time explores a novel multi-task perspective (i.e., leveraging extra information from multi-correlated tasks to boost attacking transferability). Intuitively, Sibling-Attack selects a set of tasks correlated with FR and picks the Attribute Recognition (AR) task as the task used in Sibling-Attack based on theoretical and quantitative analysis. Sibling-Attack then develops an optimization framework that fuses adversarial gradient information through (1) constraining the cross-task features to be under the same space, (2) a joint-task meta optimization framework that enhances the gradient compatibility among tasks, and (3) a cross-task gradient stabilization method which mitigates the oscillation effect during attacking. Extensive experiments demonstrate that Sibling-Attack outperforms state-of-the-art FR attack techniques by a non-trivial margin, boosting ASR by 12.61 average on state-of-the-art pre-trained FR models and two well-known, widely used commercial FR systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro