SHAP for additively modeled features in a boosted trees model

07/29/2022
by   Michael Mayer, et al.
0

An important technique to explore a black-box machine learning (ML) model is called SHAP (SHapley Additive exPlanation). SHAP values decompose predictions into contributions of the features in a fair way. We will show that for a boosted trees model with some or all features being additively modeled, the SHAP dependence plot of such a feature corresponds to its partial dependence plot up to a vertical shift. We illustrate the result with XGBoost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro