Shannon meets von Neumann: A Minimax Theorem for Channel Coding in the Presence of a Jammer

11/18/2018
by   Sharu Theresa Jose, et al.
0

We study the setting of channel coding over a family of channels whose state is controlled by an adversarial jammer by viewing it as a zero-sum game between a finite blocklength encoder-decoder team, and the jammer. The encoder-decoder team choose stochastic encoding and decoding strategies to minimize the average probability of error in transmission, while the jammer chooses a distribution on the state-space to maximize this probability. The min-max value of this game is equivalent to channel coding for a compound channel -- we call this the Shannon solution of the problem. The max-min value corresponds to finding a mixed channel with the largest value of the minimum achievable probability of error. When the min-max and max-min values are equal, the problem is said to admit a saddle-point or von Neumann solution. While a Shannon solution always exists, a von Neumann solution need not, owing to inherent nonconvexity in the communicating team's problem. Despite this, we show that the min-max and max-min values become equal asymptotically in the large blocklength limit, for all but finitely many rates. We explicitly characterize this limiting value as a function of the rate and obtain tight finite blocklength bounds on the min-max and max-min value. As a corollary we get an explicit expression for the ϵ-capacity of a compound channel under stochastic codes -- the first such result, to the best of our knowledge. Our results demonstrate a deeper relation between the compound channel and mixed channel than was previously known. They also show that the conventional information-theoretic viewpoint, articulated via the Shannon solution, coincides asymptotically with the game-theoretic one articulated via the von Neumann solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro