ShakeDrop regularization

02/07/2018
by   Yoshihiro Yamada, et al.
0

This paper proposes a powerful regularization method named ShakeDrop regularization. ShakeDrop is inspired by Shake-Shake regularization that decreases error rates by disturbing learning. While Shake-Shake can be applied to only ResNeXt which has multiple branches, ShakeDrop can be applied to not only ResNeXt but also ResNet, Wide ResNet and PyramidNet in a memory efficient way. Important and interesting feature of ShakeDrop is that it strongly disturbs learning by multiplying even a negative factor to the output of a convolutional layer in the forward training pass. The effectiveness of ShakeDrop is confirmed by experiments on CIFAR-10/100 and Tiny ImageNet datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro