Sex-Prediction from Periocular Images across Multiple Sensors and Spectra

05/01/2019
by   Juan Tapia, et al.
26

In this paper, we provide a comprehensive analysis of periocular-based sex-prediction (commonly referred to as gender classification) using state-of-the-art machine learning techniques. In order to reflect a more challenging scenario where periocular images are likely to be obtained from an unknown source, i.e. sensor, convolutional neural networks are trained on fused sets composed of several near-infrared (NIR) and visible wavelength (VW) image databases. In a cross-sensor scenario within each spectrum an average classification accuracy of approximately 85% is achieved. When sex-prediction is performed across spectra an average classification accuracy of about 82% is obtained. Finally, a multi-spectral sex-prediction yields a classification accuracy of 83% on average. Compared to proposed works, obtained results provide a more realistic estimation of the feasibility to predict a subject's sex from the periocular region.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro