Sex, drugs, and violence

08/11/2016
by   Stefania Raimondo, et al.
0

Automatically detecting inappropriate content can be a difficult NLP task, requiring understanding context and innuendo, not just identifying specific keywords. Due to the large quantity of online user-generated content, automatic detection is becoming increasingly necessary. We take a largely unsupervised approach using a large corpus of narratives from a community-based self-publishing website and a small segment of crowd-sourced annotations. We explore topic modelling using latent Dirichlet allocation (and a variation), and use these to regress appropriateness ratings, effectively automating rating for suitability. The results suggest that certain topics inferred may be useful in detecting latent inappropriateness -- yielding recall up to 96 regression errors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro