SeSDF: Self-evolved Signed Distance Field for Implicit 3D Clothed Human Reconstruction

04/01/2023
by   Yukang Cao, et al.
0

We address the problem of clothed human reconstruction from a single image or uncalibrated multi-view images. Existing methods struggle with reconstructing detailed geometry of a clothed human and often require a calibrated setting for multi-view reconstruction. We propose a flexible framework which, by leveraging the parametric SMPL-X model, can take an arbitrary number of input images to reconstruct a clothed human model under an uncalibrated setting. At the core of our framework is our novel self-evolved signed distance field (SeSDF) module which allows the framework to learn to deform the signed distance field (SDF) derived from the fitted SMPL-X model, such that detailed geometry reflecting the actual clothed human can be encoded for better reconstruction. Besides, we propose a simple method for self-calibration of multi-view images via the fitted SMPL-X parameters. This lifts the requirement of tedious manual calibration and largely increases the flexibility of our method. Further, we introduce an effective occlusion-aware feature fusion strategy to account for the most useful features to reconstruct the human model. We thoroughly evaluate our framework on public benchmarks, demonstrating significant superiority over the state-of-the-arts both qualitatively and quantitatively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro