Sequential Transformer for End-to-End Person Search

11/06/2022
by   Long Chen, et al.
1

Person Search aims to simultaneously localize and recognize a target person from realistic and uncropped gallery images. One major challenge of person search comes from the contradictory goals of the two sub-tasks, i.e., person detection focuses on finding the commonness of all persons so as to distinguish persons from the background, while person re-identification (re-ID) focuses on the differences among different persons. In this paper, we propose a novel Sequential Transformer (SeqTR) for end-to-end person search to deal with this challenge. Our SeqTR contains a detection transformer and a novel re-ID transformer that sequentially addresses detection and re-ID tasks. The re-ID transformer comprises the self-attention layer that utilizes contextual information and the cross-attention layer that learns local fine-grained discriminative features of the human body. Moreover, the re-ID transformer is shared and supervised by multi-scale features to improve the robustness of learned person representations. Extensive experiments on two widely-used person search benchmarks, CUHK-SYSU and PRW, show that our proposed SeqTR not only outperforms all existing person search methods with a 59.3 achieves comparable performance to the state-of-the-art results with an mAP of 94.8

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro