Separating LREC from LFP

07/12/2021
by   Anuj Dawar, et al.
0

LREC= is an extension of first-order logic with a logarithmic recursion operator. It was introduced by Grohe et al. and shown to capture the complexity class L over trees and interval graphs. It does not capture L in general as it is contained in FPC - fixed-point logic with counting. We show that this containment is strict. In particular, we show that the path systems problem, a classic P-complete problem which is definable in LFP - fixed-point logic - is not definable in LREC= This shows that the logarithmic recursion mechanism is provably weaker than general least fixed points. The proof is based on a novel Spoiler-Duplicator game tailored for this logic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro