Sentiment analysis is not solved! Assessing and probing sentiment classification

06/13/2019
by   Jeremy Barnes, et al.
0

Neural methods for SA have led to quantitative improvements over previous approaches, but these advances are not always accompanied with a thorough analysis of the qualitative differences. Therefore, it is not clear what outstanding conceptual challenges for sentiment analysis remain. In this work, we attempt to discover what challenges still prove a problem for sentiment classifiers for English and to provide a challenging dataset. We collect the subset of sentences that an (oracle) ensemble of state-of-the-art sentiment classifiers misclassify and then annotate them for 18 linguistic and paralinguistic phenomena, such as negation, sarcasm, modality, etc. The dataset is available at https://github.com/ltgoslo/assessing_and_probing_sentiment. Finally, we provide a case study that demonstrates the usefulness of the dataset to probe the performance of a given sentiment classifier with respect to linguistic phenomena.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro