Semi-supervised Segmentation Fusion of Multi-spectral and Aerial Images

02/17/2015
by   M. Ozay, et al.
0

A Semi-supervised Segmentation Fusion algorithm is proposed using consensus and distributed learning. The aim of Unsupervised Segmentation Fusion (USF) is to achieve a consensus among different segmentation outputs obtained from different segmentation algorithms by computing an approximate solution to the NP problem with less computational complexity. Semi-supervision is incorporated in USF using a new algorithm called Semi-supervised Segmentation Fusion (SSSF). In SSSF, side information about the co-occurrence of pixels in the same or different segments is formulated as the constraints of a convex optimization problem. The results of the experiments employed on artificial and real-world benchmark multi-spectral and aerial images show that the proposed algorithms perform better than the individual state-of-the art segmentation algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro