Semi-Supervised Learning with Declaratively Specified Entropy Constraints

04/24/2018
by   Haitian Sun, et al.
0

We propose a technique for declaratively specifying strategies for semi-supervised learning (SSL). The proposed method can be used to specify ensembles of semi-supervised learning, as well as agreement constraints and entropic regularization constraints between these learners, and can be used to model both well-known heuristics such as co-training and novel domain-specific heuristics. In addition to representing individual SSL heuristics, we show that multiple heuristics can also be automatically combined using Bayesian optimization methods. We show consistent improvements on a suite of well-studied SSL benchmarks, including a new state-of-the-art result on a difficult relation extraction task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro