Semi-Parametric Deep Neural Networks in Linear Time and Memory

05/24/2022
by   Richa Rastogi, et al.
8

Recent advances in deep learning have been driven by large-scale parametric models, which can be computationally expensive and lack interpretability. Semi-parametric methods query the training set at inference time and can be more compact, although they typically have quadratic computational complexity. Here, we introduce SPIN, a general-purpose semi-parametric neural architecture whose computational cost is linear in the size and dimensionality of the data. Our architecture is inspired by inducing point methods and relies on a novel application of cross-attention between datapoints. At inference time, its computational cost is constant in the training set size as the data gets distilled into a fixed number of inducing points. We find that our method reduces the computational requirements of existing semi-parametric models by up to an order of magnitude across a range of datasets and improves state-of-the-art performance on an important practical problem, genotype imputation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro