Semi- and Weakly Supervised Directional Bootstrapping Model for Automated Skin Lesion Segmentation

03/08/2019
by   Yutong Xie, et al.
6

Automated skin lesion segmentation on dermoscopy images is an essential and challenging task in the computer-aided diagnosis of skin cancer. Despite their prevalence and relatively good performance, deep learning based segmentation methods require a myriad number of training images with pixel-level dense annotation, which is hard to obtain due to the efforts and costs related to dermoscopy images acquisition and annotation. In this paper, we propose the semi- and weakly supervised directional bootstrapping (SWSDB) model for skin lesion segmentation, which consists of three deep convolutional neural networks: a coarse segmentation network (coarse-SN), a dilated classification network (dilated-CN) and an enhanced segmentation network (enhanced-SN). Both the coarse-SN and enhanced-SN are trained using the images with pixel-level annotation, and the dilated-CN is trained using the images with image-level class labels. The coarse-SN generates rough segmentation masks that provide a prior bootstrapping for the dilated-CN and help it produce accurate lesion localization maps. The maps are then fed into the enhanced-SN to transfer the localization information learned from image-level labels to the enhanced-SN to generate segmentation results. Furthermore, we introduce a hybrid loss that is the weighted sum of a dice loss and a rank loss to the coarse-SN and enhanced-SN, ensuring both networks' good compatibility for the data with imbalanced classes and imbalanced hard-easy pixels. We evaluated the proposed SWSDB model on the ISIC-2017 challenge dataset and PH2 dataset and achieved a Jaccard index of 80.4 lesion segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro