Semantic Reinforced Attention Learning for Visual Place Recognition

08/19/2021
by   Guohao Peng, et al.
0

Large-scale visual place recognition (VPR) is inherently challenging because not all visual cues in the image are beneficial to the task. In order to highlight the task-relevant visual cues in the feature embedding, the existing attention mechanisms are either based on artificial rules or trained in a thorough data-driven manner. To fill the gap between the two types, we propose a novel Semantic Reinforced Attention Learning Network (SRALNet), in which the inferred attention can benefit from both semantic priors and data-driven fine-tuning. The contribution lies in two-folds. (1) To suppress misleading local features, an interpretable local weighting scheme is proposed based on hierarchical feature distribution. (2) By exploiting the interpretability of the local weighting scheme, a semantic constrained initialization is proposed so that the local attention can be reinforced by semantic priors. Experiments demonstrate that our method outperforms state-of-the-art techniques on city-scale VPR benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro