Self-Supervised Reinforcement Learning forRecommender Systems

06/10/2020
by   Xin Xin, et al.
70

In session-based or sequential recommendation, it is important to consider a number of factors like long-term user engagement, multiple types of user-item interactions such as clicks, purchases etc. The current state-of-the-art supervised approaches fail to model them appropriately. Casting sequential recommendation task as a reinforcement learning (RL) problem is a promising direction. A major component of RL approaches is to train the agent through interactions with the environment. However, it is often problematic to train a recommender in an on-line fashion due to the requirement to expose users to irrelevant recommendations. As a result, learning the policy from logged implicit feedback is of vital importance, which is challenging due to the pure off-policy setting and lack of negative rewards (feedback). In this paper, we propose self-supervised reinforcement learning for sequential recommendation tasks. Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL. The RL part acts as a regularizer to drive the supervised layer focusing on specific rewards(e.g., recommending items which may lead to purchases rather than clicks) while the self-supervised layer with cross-entropy loss provides strong gradient signals for parameter updates. Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC). We integrate the proposed frameworks with four state-of-the-art recommendation models. Experimental results on two real-world datasets demonstrate the effectiveness of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro