Self-supervised learning for audio-visual speaker diarization

02/13/2020
by   Yifan Ding, et al.
10

Speaker diarization, which is to find the speech segments of specific speakers, has been widely used in human-centered applications such as video conferences or human-computer interaction systems. In this paper, we propose a self-supervised audio-video synchronization learning method to address the problem of speaker diarization without massive labeling effort. We improve the previous approaches by introducing two new loss functions: the dynamic triplet loss and the multinomial loss. We test them on a real-world human-computer interaction system and the results show our best model yields a remarkable gain of +8 introduce a new large scale audio-video corpus designed to fill the vacancy of audio-video datasets in Chinese.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro