Self Semi Supervised Neural Architecture Search for Semantic Segmentation

01/29/2022
by   Loic Pauletto, et al.
0

In this paper, we propose a Neural Architecture Search strategy based on self supervision and semi-supervised learning for the task of semantic segmentation. Our approach builds an optimized neural network (NN) model for this task by jointly solving a jigsaw pretext task discovered with self-supervised learning over unlabeled training data, and, exploiting the structure of the unlabeled data with semi-supervised learning. The search of the architecture of the NN model is performed by dynamic routing using a gradient descent algorithm. Experiments on the Cityscapes and PASCAL VOC 2012 datasets demonstrate that the discovered neural network is more efficient than a state-of-the-art hand-crafted NN model with four times less floating operations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro