SCK: A sparse coding based key-point detector

02/07/2018
by   Thanh Hong Phuoc, et al.
0

All current popular hand-crafted key-point detectors such as Harris corner, MSER, SIFT, SURF... rely on some specific pre-designed structures for the detection of corners, blobs, or junctions in an image. In this paper, a novel sparse coding based key point detector which requires no particular pre-designed structures is presented. The key-point detector is based on measuring the complexity level of each block in an image to decide where a key-point should be. The complexity level of a block is the total number of non-zero components of a sparse representation of the block. Generally, a block constructed with more components is more complex and has more potential to be a good key-point. Experimental results on Webcam and EF datasets [1, 2] show that the proposed detector achieves significantly high repeatability compared to hand-crafted features, and even outperforms the matching scores of the state-of-the-art learning based detector.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro