Scaling description of generalization with number of parameters in deep learning

01/06/2019
by   Mario Geiger, et al.
0

We provide a description for the evolution of the generalization performance of fixed-depth fully-connected deep neural networks, as a function of their number of parameters N. In the setup where the number of data points is larger than the input dimension, as N gets large, we observe that increasing N at fixed depth reduces the fluctuations of the output function f_N induced by initial conditions, with ||f_N-f̅_N||∼ N^-1/4 where f̅_N denotes an average over initial conditions. We explain this asymptotic behavior in terms of the fluctuations of the so-called Neural Tangent Kernel that controls the dynamics of the output function. For the task of classification, we predict these fluctuations to increase the true test error ϵ as ϵ_N-ϵ_∞∼ N^-1/2 + O( N^-3/4). This prediction is consistent with our empirical results on the MNIST dataset and it explains in a concrete case the puzzling observation that the predictive power of deep networks improves as the number of fitting parameters grows. This asymptotic description breaks down at a so-called jamming transition which takes place at a critical N=N^*, below which the training error is non-zero. In the absence of regularization, we observe an apparent divergence ||f_N||∼ (N-N^*)^-α and provide a simple argument suggesting α=1, consistent with empirical observations. This result leads to a plausible explanation for the cusp in test error known to occur at N^*. Overall, our analysis suggests that once models are averaged, the optimal model complexity is reached just beyond the point where the data can be perfectly fitted, a result of practical importance that needs to be tested in a wide range of architectures and data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro