Scalable Simulation of Realistic Volume Fraction Red Blood Cell Flows through Vascular Networks

09/23/2019
by   Libin Lu, et al.
0

High-resolution blood flow simulations have potential for developing better understanding biophysical phenomena at the microscale, such as vasodilation, vasoconstriction and overall vascular resistance. To this end, we present a scalable platform for the simulation of red blood cell (RBC) flows through complex capillaries by modeling the physical system as a viscous fluid with immersed deformable particles. We describe a parallel boundary integral equation solver for general elliptic partial differential equations, which we apply to Stokes flow through blood vessels. We also detail a parallel collision avoiding algorithm to ensure RBCs and the blood vessel remain contact-free. We have scaled our code on Stampede2 at the Texas Advanced Computing Center up to 34,816 cores. Our largest simulation enforces a contact-free state between four billion surface elements and solves for three billion degrees of freedom on one million RBCs and a blood vessel composed from two million patches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro