Scalable representation learning and retrieval for display advertising

01/04/2021
by   Olivier Koch, et al.
0

Over the past decades, recommendation has become a critical component of many online services such as media streaming and e-commerce. Recent advances in algorithms, evaluation methods and datasets have led to continuous improvements of the state-of-the-art. However, much work remains to be done to make these methods scale to the size of the internet. Online advertising offers a unique testbed for recommendation at scale. Every day, billions of users interact with millions of products in real-time. Systems addressing this scenario must work reliably at scale. We propose an efficient model (LED, for Lightweight Encoder-Decoder) reaching a new trade-off between complexity, scale and performance. Specifically, we show that combining large-scale matrix factorization with lightweight embedding fine-tuning unlocks state-of-the-art performance at scale. We further provide the detailed description of a system architecture and demonstrate its operation over two months at the scale of the internet. Our design allows serving billions of users across hundreds of millions of items in a few milliseconds using standard hardware.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro