Sample Efficiency of Data Augmentation Consistency Regularization

02/24/2022
by   Shuo Yang, et al.
7

Data augmentation is popular in the training of large neural networks; currently, however, there is no clear theoretical comparison between different algorithmic choices on how to use augmented data. In this paper, we take a step in this direction - we first present a simple and novel analysis for linear regression, demonstrating that data augmentation consistency (DAC) is intrinsically more efficient than empirical risk minimization on augmented data (DA-ERM). We then propose a new theoretical framework for analyzing DAC, which reframes DAC as a way to reduce function class complexity. The new framework characterizes the sample efficiency of DAC for various non-linear models (e.g., neural networks). Further, we perform experiments that make a clean and apples-to-apples comparison (i.e., with no extra modeling or data tweaks) between ERM and consistency regularization using CIFAR-100 and WideResNet; these together demonstrate the superior efficacy of DAC.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro