Same Coverage, Less Bloat: Accelerating Binary-only Fuzzing with Coverage-preserving Coverage-guided Tracing

09/07/2022
by   Stefan Nagy, et al.
0

Coverage-guided fuzzing's aggressive, high-volume testing has helped reveal tens of thousands of software security flaws. While executing billions of test cases mandates fast code coverage tracing, the nature of binary-only targets leads to reduced tracing performance. A recent advancement in binary fuzzing performance is Coverage-guided Tracing (CGT), which brings orders-of-magnitude gains in throughput by restricting the expense of coverage tracing to only when new coverage is guaranteed. Unfortunately, CGT suits only a basic block coverage granularity – yet most fuzzers require finer-grain coverage metrics: edge coverage and hit counts. It is this limitation which prohibits nearly all of today's state-of-the-art fuzzers from attaining the performance benefits of CGT. This paper tackles the challenges of adapting CGT to fuzzing's most ubiquitous coverage metrics. We introduce and implement a suite of enhancements that expand CGT's introspection to fuzzing's most common code coverage metrics, while maintaining its orders-of-magnitude speedup over conventional always-on coverage tracing. We evaluate their trade-offs with respect to fuzzing performance and effectiveness across 12 diverse real-world binaries (8 open- and 4 closed-source). On average, our coverage-preserving CGT attains near-identical speed to the present block-coverage-only CGT, UnTracer; and outperforms leading binary- and source-level coverage tracers QEMU, Dyninst, RetroWrite, and AFL-Clang by 2-24x, finding more bugs in less time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro