Saliency Enhancement using Superpixel Similarity

12/01/2021
by   Leonardo de Melo Joao, et al.
0

Saliency Object Detection (SOD) has several applications in image analysis. Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors. To circumvent the problem, we introduce a post-processing method, named Saliency Enhancement over Superpixel Similarity (SESS), which executes two operations alternately for saliency completion: object-based superpixel segmentation and superpixel-based saliency estimation. SESS uses an input saliency map to estimate seeds for superpixel delineation and define superpixel queries in foreground and background. A new saliency map results from color similarities between queries and superpixels. The process repeats for a given number of iterations, such that all generated saliency maps are combined into a single one by cellular automata. Finally, post-processed and initial maps are merged using their average values per superpixel. We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro