Safe and Efficient Off-Policy Reinforcement Learning

06/08/2016
by   Remi Munos, et al.
0

In this work, we take a fresh look at some old and new algorithms for off-policy, return-based reinforcement learning. Expressing these in a common form, we derive a novel algorithm, Retrace(λ), with three desired properties: (1) it has low variance; (2) it safely uses samples collected from any behaviour policy, whatever its degree of "off-policyness"; and (3) it is efficient as it makes the best use of samples collected from near on-policy behaviour policies. We analyze the contractive nature of the related operator under both off-policy policy evaluation and control settings and derive online sample-based algorithms. We believe this is the first return-based off-policy control algorithm converging a.s. to Q^* without the GLIE assumption (Greedy in the Limit with Infinite Exploration). As a corollary, we prove the convergence of Watkins' Q(λ), which was an open problem since 1989. We illustrate the benefits of Retrace(λ) on a standard suite of Atari 2600 games.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro