Robustness of Dynamical Quantities of Interest via Goal-Oriented Information Theory

06/21/2019
by   Jeremiah Birrell, et al.
0

Variational-principle-based methods that relate expectations of a quantity of interest to information-theoretic divergences have proven to be effective tools for obtaining robustness bounds under both parametric and non-parametric model-form uncertainty. Here, we extend these ideas to utilize information divergences that are specifically targeted at the quantity-of-interest being investigated; leveraging this specificity results in tighter robustness bounds and expands the class of problems that can be treated. We find the method especially useful for problems involving unbounded time-horizons, a case where established information-theoretic methods only produce trivial bounds. General problem types that can be treated within this framework include the expected value and distribution of a stopping time, time averages, and exponentially discounted observables. We illustrate these results with several examples, including option pricing, stochastic control, semi-Markov processes, and expectations and distributions of hitting times.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro