Robust Estimators in High Dimensions without the Computational Intractability

04/21/2016
by   Ilias Diakonikolas, et al.
0

We study high-dimensional distribution learning in an agnostic setting where an adversary is allowed to arbitrarily corrupt an ε-fraction of the samples. Such questions have a rich history spanning statistics, machine learning and theoretical computer science. Even in the most basic settings, the only known approaches are either computationally inefficient or lose dimension-dependent factors in their error guarantees. This raises the following question:Is high-dimensional agnostic distribution learning even possible, algorithmically? In this work, we obtain the first computationally efficient algorithms with dimension-independent error guarantees for agnostically learning several fundamental classes of high-dimensional distributions: (1) a single Gaussian, (2) a product distribution on the hypercube, (3) mixtures of two product distributions (under a natural balancedness condition), and (4) mixtures of spherical Gaussians. Our algorithms achieve error that is independent of the dimension, and in many cases scales nearly-linearly with the fraction of adversarially corrupted samples. Moreover, we develop a general recipe for detecting and correcting corruptions in high-dimensions, that may be applicable to many other problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro