Robust descent using smoothed multiplicative noise

10/15/2018
by   Matthew J. Holland, et al.
0

To improve the off-sample generalization of classical procedures minimizing the empirical risk under potentially heavy-tailed data, new robust learning algorithms have been proposed in recent years, with generalized median-of-means strategies being particularly salient. These procedures enjoy performance guarantees in the form of sharp risk bounds under weak moment assumptions on the underlying loss, but typically suffer from a large computational overhead and substantial bias when the data happens to be sub-Gaussian, limiting their utility. In this work, we propose a novel robust gradient descent procedure which makes use of a smoothed multiplicative noise applied directly to observations before constructing a sum of soft-truncated gradient coordinates. We show that the procedure has competitive theoretical guarantees, with the major advantage of a simple implementation that does not require an iterative sub-routine for robustification. Empirical tests reinforce the theory, showing more efficient generalization over a much wider class of data distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro