Reversible Adversarial Examples with Beam Search Attack and Grayscale Invariance

06/20/2023
by   Haodong Zhang, et al.
0

Reversible adversarial examples (RAE) combine adversarial attacks and reversible data-hiding technology on a single image to prevent illegal access. Most RAE studies focus on achieving white-box attacks. In this paper, we propose a novel framework to generate reversible adversarial examples, which combines a novel beam search based black-box attack and reversible data hiding with grayscale invariance (RDH-GI). This RAE uses beam search to evaluate the adversarial gain of historical perturbations and guide adversarial perturbations. After the adversarial examples are generated, the framework RDH-GI embeds the secret data that can be recovered losslessly. Experimental results show that our method can achieve an average Peak Signal-to-Noise Ratio (PSNR) of at least 40dB compared to source images with limited query budgets. Our method can also achieve a targeted black-box reversible adversarial attack for the first time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro