REST: REtrieve Self-Train for generative action recognition

09/29/2022
by   Adrian Bulat, et al.
0

This work is on training a generative action/video recognition model whose output is a free-form action-specific caption describing the video (rather than an action class label). A generative approach has practical advantages like producing more fine-grained and human-readable output, and being naturally open-world. To this end, we propose to adapt a pre-trained generative Vision Language (V L) Foundation Model for video/action recognition. While recently there have been a few attempts to adapt V L models trained with contrastive learning (e.g. CLIP) for video/action, to the best of our knowledge, we propose the very first method that sets outs to accomplish this goal for a generative model. We firstly show that direct fine-tuning of a generative model to produce action classes suffers from severe overfitting. To alleviate this, we introduce REST, a training framework consisting of two key components: an unsupervised method for adapting the generative model to action/video by means of pseudo-caption generation and Self-training, i.e. without using any action-specific labels; (b) a Retrieval approach based on CLIP for discovering a diverse set of pseudo-captions for each video to train the model. Importantly, we show that both components are necessary to obtain high accuracy. We evaluate REST on the problem of zero-shot action recognition where we show that our approach is very competitive when compared to contrastive learning-based methods. Code will be made available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro